MN Canola Production Center

Research Results - 2014

Research Team - CPC

- Project lead (PI): Dr. Nancy Ehlke, U of MN, St. Paul
- Site Agronomists: Donn Vellekson & Dave Grafstrom
 Interns Ben Grafstrom, Shelia Johnson & Will Hulst
- CPC Partners:
 - MN Canola Council
 - MN Turf Council
 - **↔**U of MN
 - ***NDSU**
 - Canola Industry Partners
 - Magnusson Farms Small Plot Trials
 - Hugh Hunt Large Plot Trial

Magnusson Research Farm

U of MN Facility

- 40 acre site, located 6 miles NW of Roseau
- Small plot research on wide variety of crops
- Biomass crops, canola, corn, grass seed crops, small grains, soybeans
- Small plot research and large on-farm sites

Aerial View

UNIVERSITY OF MINNESOTA

New Partnership in 2014

- MN Canola Council
- MN Turf Council

 Three year crop rotation trial with grant funding from the MDA

CPC Research Trials in 2014

- Small plot variety trial
- Small plot fertility trial
- Small plot fungicide trial
- Aster leafhopper monitoring project
- Three year canola rotation trial
- Large on-farm swath vs. direct harvest

Canola CPC: Activities in 2014

- Small plot trials planted May 29
- On-farm trials planted mid-late May
- CPC Field Day July
 16
- First canola swathed August 30
- Final harvest date September 18

2014 - Cool and Wet

Temperatures

Moisture

2014 Growing Season - Recap

- Cool temps late start
- Wet spring
- PP acres Kittson 5%, Roseau 21%
- Flea beetles
- CPC canola yields above average
- Production fields variable stands

Small Plot Canola Variety Trial

- Planted May 29
- RCB w/4 replications
- 28 canola varieties
- 21 RR, 3 LL & 4 CL
- Harvested 9/17 & 18
- Yields ranged from 2,094 to 3,483 #/A
- Above average yields

Small-Plot Variety Trial

28 entries

- 21 Roundup Ready®
- 4 Clearfield®
- 3 Liberty Link®

9 companies

- Bayer
- Brett Young
- DuPont Pioneer
- Mycogen
- Monsanto

- Proseed
- Star Specialty Seeds
- Winfield Solutions
- Wilbur-Ellis

Top Three Canola Varieties

Yield (#/acre)

InVigor L130 3483
InVigor L252 3229
DKL38-48 3120
HyClass 930 45.1
Star 402 44.5
DK30-03 43.8

Trial Mean 2,694 Trial Mean 41.6

Summary Small-Plot Canola Variety Trial

- Trial average yield = 2,694 #/acre
- Trial range in yield: 2,094 3,483 #/acre
- Above average yields @ CPC in 2014
- Limited disease and insect pressure
- Depending upon management practices canola growers have excellent choices in LL, CL and RR canola varieties adapted to this area

Canola Fertility WHAT WE KNOW

Canola Direct Costs (\$242/acre) Source: NDSU Crop Budget

\$/acre

Seed
Fertilizer
Herbicides
Fuel
Repairs
Fungicide
Crop Ins
Op interest
Misc

Nutrient Content (#/acre) in 35 (bu/acre) Canola Crop

Nutrient Content

Can We Improve Nutrient Efficiency?

Canola Fertility

Strategies

- Protect nitrogen with coated urea e.g. ESN
- Combination of PPI and post applied urea
- Delay nitrogen application 4-6 If canola
- Post applied urea with Agrotain N stabilizer
- Variable rate (VRT)

Small Plot Fertility Trial

- Previous crop wheat
- Planting date: May 29
 RDB w/4 reps
- Background nitrogen
- **0-6** = 6#; 6-24 = 7#
- Post fertility applied June, 23 (3-5 If canola)
- Light meter
- UAV

Canola Fertility Trial

- Canola variety Star 514
- Seeding date: May 29
- Post fertilizer applied June 23 to 3 to 5 lf canola
- 0.5 inch rain after post fertilizer treatments applied
- Canola yields ranged from 2,173 to 3,560 #/A

Small Plot Fertility Treatments

- Urea PPI 0, 45, 90, 135, 180
- Urea + ESN 0, 45, 90, 135, 180
- Urea PPI + Post 45+45, 45+90, 45+135
- Urea PPI + Post w/Agrotain Ultra
 - -45+45, 45+90, 45+135
- Urea Post 0, 45, 90, 135
- Urea Post + Agrotain Ultra 45, 90, 135
- Post treatments applied June, 23

Canola Yield (% of Mean) Mean Yield = 3,007 #/acre

Canola Yield (% of Mean) Mean Yield = 3,007 #/acre

Canola Yield (% of Mean) Mean Yield = 3,007 #/acre

Methods of Application to Achieve Canola Yields of >100% Mean Mean yield = 3007 #/acre » Pounds nitrogen/acre PPI 135 PPI + Post 45 + 45 90 Post only Best Yields in 2014 - 45 PPI + 135 Post - 3,488# from Urea - 3,560# from Urea + Agrotain

Canola Yields at the 95% Confidence Level • Trial Mean = 3007#/acre

Highest yield in trial 3,560#/acre
 – Urea @ 45# PPI + Urea + Agrotain Post @135#

Second highest yield in trial 3,488#/acre
 – Urea @ 45# PPI + Urea Post @ 135#

How to Detect the Amount of Nitrogen Availability to Plants?

- Estimate based on moisture and temperature
- Soil tests
- Tissue tests
- Visual observation
- Guess??
- Crop sensors (chlorophyll, proteins, AA)
- All have advantages and disadvantages

Photosynthetically Active Radiation (PAR) – 2013 Data

Chlorophyll Meter

RCI Meter Readings

Canola Fertility Summary

- No 'Silver Bullet'
- Treatments that improve N efficiency
 - Urea PPI with ESN
 - Urea PPI followed by Urea post
 - Urea with Agrotain applied post
- Majority of nitrogen uptake 4-lf to bloom
- Light meter and UAV as a diagnostic tool??

Large On-Farm Canola Trial: Swath vs Direct Harvest

Trial was planted at **Hugh Hunts- Hallock** Trial abandoned as wet field conditions caused extreme field variability in canola stand Will repeat 2013 trial 2015

direct cut, direct cut with desiccant, swath

Two Factors Conducive for Direct Harvest Canola

Uniform Canola Stand

"Tabled" Canola

Direct Harvest Canola

Uniform Canola Stand

Note Reel Height

Do Crops Respond to Multiple Fungicide Applications?

Wheat and Ryegrass

- MN Variety Trials published in Jan 2013
- 8.3 bu/a advantage with intensive fungicide treatments compared to conventional
- Mnturfseed.org: ryegrass seed yield advantage of over 200 pounds/acre

Small Plot Fungicide Trial MN CPC in 2013

- Trial located at CPC
- RCB w/4 reps
- UTC = Untreated
- Pro = Proline 5 oz/A applied @ 30% bloom
- Prx = Priaxor 6.0 oz/A applied @ 80% bloom
- Q = Quadris 7 oz/A applied at 2 to 4 lf

INIVERSITY OF MINNESOTA

2014 Fungicide Results

- No difference in fungicide timing or product
- A trend for more canola yield with Priaxor
- Mean yield for trial = 3,265 #/acre
- Untreated control = 3,242 #/acre

Repeat trial next year

NDAWN – July 6, 2014

Estimated risk of Sclerotinia stem rot development for canola July 6, 2014

NDAWN station County Risk Low Intermediate High

Sclerotinia Risk

Estimation of the risk of Sclerotinia stem rot development is based on temperature and precipitation patterns prevalent in the region as recorded by NDAWN Stations and only apply to fields where canola is in the flowering period. Red areas indicate conditions are favorable for infection; if apothecia are present in these fields fungicide applications may be warranted. Fields in yellow areas should be scouted for apothecia and changing weather conditions. Fields in green areas have low risk of disease development

NDAWN – July 12, 2014

Estimated risk of Sclerotinia stem rot development for canola July 12, 2014

NDAWN station County Risk Low Intermediate High

Sclerotinia Risk

Estimation of the risk of Sclerotinia stem rot development is based on temperature and precipitation patterns prevalent in the region as recorded by NDAWN Stations and only apply to fields where canola is in the flowering period. Red areas indicate conditions are favorable for infection; if apothecia are present in these fields fungicide applications may be warranted. Fields in yellow areas should be scouted for apothecia and changing weather conditions. Fields in green areas have low risk of disease development

NDAWN – July 18, 2014

Estimated risk of Sclerotinia stem rot development for canola July 18, 2014

NDAWN station County

Low

High

Intermediate

Risk

Sclerotinia Risk

Estimation of the risk of Sclerotinia stem rot development is based on temperature and precipitation patterns prevalent in the region as recorded by NDAWN Stations and only apply to fields where canola is in the flowering period. Red areas indicate conditions are favorable for infection; if apothecia are present in these fields fungicide applications may be warranted. Fields in yellow areas should be scouted for apothecia and changing weather conditions. Fields in green areas have low risk of disease development

NDAWN – July 21, 2014

Estimated risk of Sclerotinia stem rot development for canola July 21, 2014

NDAWN station County Risk Low Intermediate

High

Sclerotinia Risk

Estimation of the risk of Sclerotinia stem rot development is based on temperature and precipitation patterns prevalent in the region as recorded by NDAWN Stations and only apply to fields where canola is in the flowering period. Red areas indicate conditions are favorable for infection; if apothecia are present in these fields fungicide applications may be warranted. Fields in yellow areas should be scouted for apothecia and changing weather conditions. Fields in green areas have low risk of disease development

NDAWN – July 28, 2014

Estimated risk of Sclerotinia stem rot development for canola July 28, 2014

NDAWN station County Risk Low Intermediate High

Sclerotinia Risk

Estimation of the risk of Sclerotinia stem rot development is based on temperature and precipitation patterns prevalent in the region as recorded by NDAWN Stations and only apply to fields where canola is in the flowering period. Red areas indicate conditions are favorable for infection; if apothecia are present in these fields fungicide applications may be warranted. Fields in yellow areas should be scouted for apothecia and changing weather conditions. Fields in green areas have low risk of disease development

Summary Fungicide Trials

- Limited expression of white mold in 2014
- No difference in fungicide treatment or timing
- Evidence of positive yields from multiple fungicide application - small plot trial 2013
- Will repeat small plot fungicide trials in 2015

Aster Yellows in Canola

Aster Leafhopper

- 2012 was the year of leafhopper
- In 2012, leafhoppers observed in all crops in April & May
- > 30% infection in 2012
- Normal infection rate <1%
- Leafhoppers are brought in on southerly winds
- Goal was to establish a leafhopper monitoring network

Aster Yellows

Aster Yellows in Canola - 2014

UNIVERSITY OF MINNESOTA

Aster Leafhopper Early Alert Project in Canola

Project Objectives

- Use National Weather Service data to predict leafhopper flights
- Coordinate leafhopper scouting network
- Determine leafhopper numbers & % infectivity
- Communicate to canola growers and industry partners

Aster Leafhopper Scouting Project in 2014

Leafhopper Numbers and Aster Yellows in 2014

Aster Leafhopper - Final

Aster Yellows - Swather

Aster Yellows Incidence 2014

Aster Leafhopper Monitoring Project – Jan Knodel Pl Aster Leafhopper

Joint Effort ND & MN

- Objective to determine leafhopper flights into canola growing region
- Good network established in 2014
- Low leafhopper pressure in 2014
- Weekly scouting results
 posted in NDSU Pest
 Newsletter

P. Beauzay

UNIVERSITY OF MINNESOTA

Canola Rotation Trial

- Brian Jenks (PI) on project
- Project duration three years
- Objective to determine canola growth development and yield in rotation with spring wheat and soybeans
- First year was to establish the various rotational crops

Canola Rotation Trial

Three Year: 2013-2015

Three Years: 2014-2016

Treatment	Treetment 2012 2014 2015							
Treatment		2014	2015		Treatment	2014	2015	2016
1	Wheat	Wheat	Soybean		1	Wheat	Wheat	Soybean
2	Wheat	Canola	Soybean			Wheat	Canola	Soybean
				\succ				
3	Wheat	Wheat	Canola		3	Wheat	Wheat	Canola
	Wheat	Soybean	Canola	\geq		Wheat	Soybean	Canola

Canola Rotational Trial after Fall Tillage

Canola Rotation Trial

Wheat Residue

Questions

Contact Information

www.mncanola.org

dave.grafstrom@northlandcollege.edu

- Dave Grafstrom
- Cell: 320-293-8722

Fertilizer Prices Dec., 1, 2014 Roseau, MN

- Urea (46-0-0) \$440/ton = \$0.478/unit
- ESN (44-0-0) \$570/ton = \$0.648/unit
- Agrotain 3 Qts/ton = \$0.06 unit of 46-0-0
- MAP (11-52-0) = \$585/ton
 - Ammonium nitrogen = \$0.37/unit
 - Phosphate = \$0.563/unit

